
Duinotech Resistor and Capacitor
Tester

Here’s another easy to build project similar to the LED tester, and using the same hardware. This

project will try to work out whether it’s connected to a resistor or capacitor and then show you the

value (resistance or capacitance) of it. If it’s a resistor, it’ll also suggest the nearest resistor from the

Jaycar range of ½W resistors. Of course, using off the shelf components, it’s not a high accuracy

device, but handy to have if you’re sorting through your junk drawer and are having trouble with the

colour codes. There’s about ten solder joins that need to be made to complete this project.

If you’ve already built the LED tester, you can add the components onto the same proto shield, as

the circuits use different pins on the Uno (but the same pins for the LCD).

Shopping list:
XC4410 Uno Board
XC4482 Prototyping Shield
XC4454 LCD and Pushbutton Shield
RR0552 150R Resistor (½W)
RR0574 1k2 Resistor (½W)
RR0596 10k Resistor (½W)
WC6024 Plug-Plug Jumper Leads

The resistor values aren’t critical, but the smallest one can’t be smaller than 125R as this will
overload the Uno’s outputs. If you use different values, check the notes in the code about the
changes that need to be made.

I used two plug-plug jumper cables as my probes, but you could just use any small wire (eg speaker
cable) that is lying around. You’ll also need a small piece of wire to make a connection on the
Protoshield.

Connections:
Apart from plugging the shields into the Uno, the hard part is soldering the three resistors and probe

leads onto the proto shield. See the diagram and photo below.

Once the resistors and wire have been soldered together, plug the Protoshield into the Uno, then

plug the LCD Shield into the Protoshield (they should only go one way).

Code:
There aren’t any extra libraries that are needed for this project as the ‘LCD’ and ‘math’ libraries are

both included with the IDE. The code should work fine without changes on a Leonardo or Mega

board if you have one of these instead. If you’re using different resistors, you’ll need to change the

definitions of the R1VALUE, R2VALUE or R3VALUE constants. You can also change the pins here too.

The code uses some of the functions from the LED tester sketch (such as the key handling), but is

mostly completely different.

How it works:
The component detector works by putting 5V onto the 10k resistor, and if A4 is anything but very

close to 5V, then something is connected and pulling the analog reading closer to GND.

The routine for working out if the component is a capacitor or resistor works by assuming it is a

capacitor, and discharging it (via 150R resistor to GND), then measuring the voltage on it, then

charging it up again and measuring the voltage. If the voltage has changed, then it is a capacitor, if it

hasn’t changed, then it’s a resistor.

To measure a resistor, the three test resistors are each set up as a voltage divider with the test

resistor, and the voltage at the junction measured. The resistor which gives a reading nearest 2.5V is

chosen (as this will give the best precision), and the resistor value is calculated using the voltage

divider formula: R2 = (R1 x V2)/V1. This routine exits when it detects a very high resistance,

assuming this means the test resistor has been disconnected.

The capacitor tester starts by trying to discharge the capacitor for half a second (the results are more

accurate the less the capacitor is charged). The voltage on it is measured, then it is charged from 5V

via the 150R resistor for 0.1s, then the voltage on it is measured again. The ratio between the two

voltages gives the proportion of charge (towards fully charged) it has received. When this is

combined with the 0.1s time, the time constant for the resistor-capacitor combination can be

worked out, and this is simply divided by the resistor value to give the capacitance value. If the

capacitor ends up nearly fully charge, then the measurement is not completely accurate, and the

test is redone with the 1k2 resistor. The results are then converted to easy to read units, rounded

and displayed. Similarly, if this routine detects a very low capacitance, it assumes the test

component has been removed and returns to the main detect routine.

Use:
The two leads are simply connected to the leads of the component you wish to test. If the

component is polarised (eg electrolytic capacitor), then the lead attached to A4 should go to the

positive side and the GND lead to the negative side. I’ve made the leads different colours to remind

me of this. The tester should only be used on circuits that aren’t connected to power, especially as

the Uno’s chip can easily be damaged by voltages more than 6V. Components in circuit may not read

correctly, as they will be influenced by other components they may be connected to.

Improvements:
One day, I hope to combine all the functions of the two testers to run off the same sketch (and

maybe the same leads). As built, the tester will measure resistance from 0R up to the Megohms, and

capacitance from nanofarads up to near a Farad. With some changes to the resistor and timing

values, this range could be expanded slightly, but this is mostly limited by the accuracy and internal

resistance of the ADC on the Uno. When we get a colour LCD screen, perhaps the resistor colour

codes can be added as well. I haven’t added a component part number recommendation for the

capacitor test routine, because there are so many different voltage rating and capacitor types, that a

given capacitor value would probably match up with several part numbers. There’s no reason this

couldn’t be added if you knew (for example) that you were always using 16V electrolytic capacitors.

Sketch:
/*
Arduino Resistor and Capacitor Tester

D13--10k---+---------------> Positive probe
D12--1k2---+
D11--150R--+ +-----------> Negative probe
 | |
 A4 GND

Resistor test by voltage divider- uses 3 different resistors to give auto-ranging.
Capacitor tester- Capacitance by time constant calculation, ESR by discharge and resistance test. (ESR
not accurate so not displayed)
3 modes: Auto (on startup, or by pressing select)- tries to autodetect component and then measures
 Resistor (press left)- assumes resistor and tries to measure resistance
 Capacitor (press right)- assumes capacitor and tries to measure capacitance

 */

//ranging resistor pins and values: R1 should be lowest (use a decimal point to make sure they're
floats)
//values aren't critical, but should be span a good range
//lowest value possible is 125R- lower would overload the pin. Max is probably 100K due to leakage
etc.
//if you have a good multimeter, you can tweak these values as calibration
#define R1VALUE 150.0
#define R2VALUE 1200.0
#define R3VALUE 10000.0
#define R1PIN 11
#define R2PIN 12
#define R3PIN 13
#define AIN A4
#define MIDRANGE 512
#define CAPTIME 0.1

#include <LiquidCrystal.h>
#include <Math.h>
//pin defs to suit LCD Shield
LiquidCrystal lcd(8, 9, 4, 5, 6, 7);
//pin for buttons
#define KEYPIN A0
//button constants
#define btnRIGHT 6
#define btnUP 5
#define btnDOWN 4
#define btnLEFT 3
#define btnSELECT 2
#define btnNONE (-1)

//Globals for display
//resistors in Jaycar 1/2 W range, part nos start at RR0524 for 10R
#define RCOUNT 121
long
rvals[]={10,11,12,13,15,16,18,20,22,24,27,30,33,36,39,43,47,51,56,62,68,75,82,91,100,110,120,130,150,1
60,180,200,220,240,270,300,330,360,390,430,470,510,560,620,680,750,820,910,1000,1100,1200,1300,1500,16
00,1800,2000,2200,2400,2700,3000,3300,3600,3900,4300,4700,5100,5600,6200,6800,7500,8200,9100,10000,110
00,12000,13000,15000,16000,18000,20000,22000,24000,27000,30000,33000,36000,39000,43000,47000,51000,560
00,62000,68000,75000,82000,91000,100000,110000,120000,130000,150000,160000,180000,200000,220000,240000
,270000,300000,330000,360000,390000,430000,470000,510000,560000,620000,680000,750000,820000,910000,100
0000};
int cdetect=0; //variable for detected component 1=R, 2=C
int cselect=0; //to force component selection 0=auto, 1=R, 2=C

void setup() {
 lcd.begin(16, 2); //lcd
 lcdsplash();
 lcd.setCursor(0, 1);
 lcd.print(" Tester");
 delay(1000);
}

void loop() {
 waitconnect(); // wait till something is connected
 if(cselect){cdetect=cselect;}else{cdetect=detect();} //goto selection if made, otherwise
autodetect
 switch(cdetect){
 case 1:
 doresistor();
 lcdsplash(); //redo the splash screen in case it was written over
 break;
 case 2:
 docapacitor();
 lcdsplash(); //redo the splash screen in case it was written over
 break;
 default:
 doerror();
 break;
 }
}

void doresistor(){

while(1){ //do it all repeatedly till the resistor is disconnected (see return; below)
 int a1,a2,a3,a,diff;
 float rdiv,rcalc,af; //rdiv= Rof divider, rcalc is R of resistor under test, af is float
version of analog reading
 pinMode(R1PIN,OUTPUT);
 pinMode(R2PIN,INPUT);
 pinMode(R3PIN,INPUT);
 digitalWrite(R1PIN,HIGH);
 delay(1);
 a1=analogRead(AIN); //read with 1st resistor as voltage divider
 pinMode(R1PIN,INPUT);
 pinMode(R2PIN,OUTPUT);
 digitalWrite(R2PIN,HIGH);
 delay(1);
 a2=analogRead(AIN); //read with 2nd resistor as voltage divider
 pinMode(R2PIN,INPUT);
 pinMode(R3PIN,OUTPUT);
 digitalWrite(R3PIN,HIGH);
 delay(1);
 a3=analogRead(AIN); //read with 3rd resistor as voltage divider
 pinMode(R3PIN,INPUT); //shut outputs down
 //find the resistor which gives an analog value closest to 512- middle of the range gives best
accuracy
 a=a1;
 rdiv=R1VALUE;
 diff=abs(MIDRANGE-a1); //assume it's R1 and then see if there's a better match
 if(abs(MIDRANGE-a2)<diff){ //R2 is better
 a=a2;
 rdiv=R2VALUE;
 diff=abs(MIDRANGE-a2);
 }
 if(abs(MIDRANGE-a3)<diff){ //R3 is better
 a=a3;
 rdiv=R3VALUE;
 diff=abs(MIDRANGE-a3);
 }
 if(a>=1022){ //open circuit, resistor has probably been detached, so go back to main screen,
avoid div/0 error
 return;
 }else{
 af=a;
 rcalc=(af/(1023-af))*rdiv;
 lcd.setCursor(0, 0);
 lcd.print("Resistor: ");
 lcdprintrval(rcalc);
 int i=rmatch(rcalc); //find index of R that matches rcalc best
 lcd.setCursor(0, 1);
 lcd.print("Try ");
 lcdprintpartno(i);
 lcd.print("(");
 lcdprintrval(rvals[i]);
 lcd.print(")");
 delay(300); //wait a bit so we get a steady display
 }
}
}
int rmatch(float r){
 int k=-1; //to store index of best match, default to -1
 float d=1e9; //very big number, representing difference from matches
 for(int j=0;j<RCOUNT;j++){
 if(abs(rvals[j]-r)<d){
 d=abs(rvals[j]-r);
 k=j;
 }
 }
 return k;
}

void docapacitor(){
 int alo,ahi;
 float esr;
 float c,ts,soc,t,ahif,alof,rvalue;
 lcd.setCursor(0, 0);
 lcd.print("Capacitor......."); //measuring caps might take a bit longer, so change display

 while(1){ //stay in this loop until disconnected
 pinMode(R1PIN,OUTPUT);
 digitalWrite(R1PIN,LOW); //R1 to discharge as much as possible
 pinMode(R2PIN,INPUT);
 pinMode(R3PIN,INPUT);
 delay(500);
 pinMode(R1PIN,INPUT);
 alo=analogRead(AIN); //to read ESR
 digitalWrite(R1PIN,HIGH); //turn on power to detect voltage drop across cap-probably not super
accurate
 pinMode(R1PIN,OUTPUT);
 ahi=analogRead(AIN); //difference with power on
 digitalWrite(R1PIN,LOW); //R1 to discharge as much as possible
 if(ahi<alo){ahi=alo;} //to avoid negative values
 esr=0;
 if(ahi<1023){
 esr=((ahi-alo)*R1VALUE)/(1023-ahi);
 }
 //measure voltage on cap, charge up for t, measure state of charge, convert to tc's, work out C
knowing R
 digitalWrite(R1PIN,HIGH); //charge it up
 alo=analogRead(AIN); //to read capacitance
 delay(CAPTIME*1000);
 ahi=analogRead(AIN); //to read capacitance
 digitalWrite(R1PIN,LOW); //discharge (in case we need to do again)
 rvalue=R1VALUE; //assume this is the one we're using
 if(ahi>1000){ //very high termination, probably get more accurate results with 2nd resistor
 rvalue=R2VALUE; //assume this is the one we're using
 delay(500); //discharge
 pinMode(R1PIN,INPUT);
 pinMode(R2PIN,OUTPUT);
 digitalWrite(R2PIN,HIGH); //charge it up
 alo=analogRead(AIN); //to read capacitance
 delay(CAPTIME*1000);
 ahi=analogRead(AIN); //to read capacitance
 digitalWrite(R1PIN,LOW); //discharge (in case we need to do again)
 }
 alof=alo;
 ahif=ahi;
 if((ahi==1023)||(alo>=ahi)){
 return; //cap has charged up too quick to be measured or is too high value to change
voltage
 }else{
 soc=(1023-ahif)/(1023-alof); //work out level of charge obtained
 ts=-log(soc); //this is number of time constants elapsed
 t=CAPTIME/ts; //time elapsed in seconds
 c=t/rvalue; //capacitance is time constant divided by resistor
 }
 lcd.setCursor(0,1);
 lcd.print(" "); //clear the line so we don't have stuff from the last reading
 lcd.setCursor(5,1);
 int p; //find position of most significant digits using log10- make it an int speed up the
maths
 float m; //multiplier to use
 p=log10(c);
 m=pow(10,p-2); //2 sf
 c=round(c/m+0.5)*m;
 if(c>1){ //show in Farads
 lcd.print(c,ndig(c));
 lcd.print("F");
 }else if(c>1e-6){ //show in uF
 c=c*1e6;
 lcd.print(c,ndig(c));
 lcd.print("uF");
 }else{ //show in nF
 c=c*1e9;
 lcd.print(c,ndig(c));
 lcd.print("nF");
 }
 delay(300);
 }
}

int ndig(float c){ //work out how many decimal places to show

 if(c>100){return 0;}
 if(c>10){return 1;}
 return 2;
}

int detect(){ //auto detect whether it's a cap or resistor connected
 int ahi,alo;
 lcd.setCursor(0, 1);
 lcd.print("Detecting R or C");
 pinMode(R1PIN,OUTPUT);
 pinMode(R2PIN,INPUT);
 pinMode(R3PIN,OUTPUT);
 digitalWrite(R3PIN,LOW); //pull low to discharge- R3 will be used to stop output floating later
 digitalWrite(R1PIN,LOW); //R1 to discharge as much as possible
 delay(500);
 pinMode(R1PIN,INPUT);
 delay(1);
 alo=analogRead(AIN); //should be near zero for a resistor
 pinMode(R1PIN,OUTPUT);
 digitalWrite(R1PIN,HIGH); //put some charge into it- we should be able to detect almost up to 1F,
if not raise delay- not critical, just takes longer
 delay(300);
 pinMode(R1PIN,INPUT);
 delay(1);
 ahi=analogRead(AIN); //delay between turning output off and reading means very small caps
might be discharge- smallest is about 1n
 if(ahi-alo>4){return 2;}else{return 1;} //small difference > resistor
}

void doerror(){
 lcd.setCursor(0, 1);
 lcd.print("Can't autodetect ");
 delay(1000);
}

void lcdsplash(){
 lcd.setCursor(0, 0);
 switch(cselect){
 case 1:
 lcd.print("Duinotech R mode");
 break;
 case 2:
 lcd.print("Duinotech C mode");
 break;
 default:
 lcd.print("Duinotech R & C ");
 break;
 }
}

void waitconnect(){
 lcd.setCursor(0, 1);
 lcd.print("Detecting ");
 int ahi,alo;
 int d=0;
 pinMode(R1PIN,INPUT);
 pinMode(R2PIN,INPUT);
 pinMode(R3PIN,OUTPUT);
 while(1){
 digitalWrite(R3PIN,LOW);
 delay(1);
 alo=analogRead(AIN);
 digitalWrite(R3PIN,HIGH);
 delay(1);
 ahi=analogRead(AIN);
 if(ahi-alo<1000){return;}
 d++;
 if(d>13){d=0;}
 lcd.setCursor(9+d%7,1);
 if(d>6){lcd.print(" ");}else{lcd.print(".");}
 dobuttons();
 delay(100);
 }
}

void lcdprintpartno(int index){
 //part number
 lcd.write('R');
 lcd.write('R');
 lcd.write('0');
 lcd.write((((index+524)/100)%10)+'0'); //part no's start at RR0524 for 10R
 lcd.write((((index+524)/10)%10)+'0');
 lcd.write((((index+524))%10)+'0');
}

void lcdprintrval(long rval){ //print a value in 10k0 format, always outputs 4 characters
 long mult=1;
 long modval;
 if(rval>999){mult=1000;}
 if(rval>999999){mult=1000000;}
 modval=(10*rval)/mult; //convert to final format, save a decimal place
 if(modval>999){ //nnnM
 lcd.write(((modval/1000)%10)+'0');
 lcd.write(((modval/100)%10)+'0');
 lcd.write(((modval/10)%10)+'0');
 lcdprintmult(mult);
 }else{
 if(modval>99){ //nnMn
 lcd.write(((modval/100)%10)+'0');
 lcd.write(((modval/10)%10)+'0');
 lcdprintmult(mult);
 lcd.write(((modval)%10)+'0');
 }else{ //_nMn
 lcd.write(' ');
 lcd.write(((modval/10)%10)+'0');
 lcdprintmult(mult);
 lcd.write(((modval)%10)+'0');
 }
 }
}
void lcdprintmult(long mult){ //helper function to print multiplier
 switch (mult){
 case 1: lcd.print('R');break;
 case 1000: lcd.print('k');break;
 case 1000000: lcd.print('M');break;
 default: lcd.print('?');break;
 }
}
int read_LCD_buttons(){
 int adc_key_in = 0;
 adc_key_in = analogRead(KEYPIN); // read the value from the sensor
 delay(5); //switch debounce delay. Increase this delay if incorrect switch selections are returned.
 int k = (analogRead(KEYPIN) - adc_key_in); //gives the button a slight range to allow for a little
contact resistance noise
 if (5 < abs(k)) return btnNONE; // double checks the keypress. If the two readings are not equal
+/-k value after debounce delay, it tries again.
 // my buttons when read are centered at these valies: 0, 144, 329, 504, 741
 // we add approx 50 to those values and check to see if we are close
 if (adc_key_in > 1000) return btnNONE; // We make this the 1st option for speed reasons since it
will be the most likely result
 if (adc_key_in < 50) return btnRIGHT;
 if (adc_key_in < 195) return btnUP;
 if (adc_key_in < 380) return btnDOWN;
 if (adc_key_in < 555) return btnLEFT;
 if (adc_key_in < 790) return btnSELECT;
 return btnNONE; // when all others fail, return this...
}
void dobuttons(){ //updates variables. debounces by only sampling at intervals
 int key;
 key = read_LCD_buttons();
 if(key==btnLEFT){cselect=1;} //force resistor mode
 if(key==btnRIGHT){cselect=2;} //force capacitor mode
 if(key==btnUP){}
 if(key==btnDOWN){}
 if(key==btnSELECT){cselect=0;} //auto detect
 if(key!=btnNONE){lcdsplash();} //update display to show setting
}

